Acta Crystallographica Section C Crystal Structure Communications

ISSN 0108-2701

(S)-4-Benzyl-3-[(R)-4,4,4-trifluoro-3-(4-methoxyphenyl)butanoyl]-1,3-oxazolidin-2-one

Shoichi Sato et al.

Electronic paper

This paper is published electronically. It meets the data-validation criteria for publication in Acta Crystallographica Section C. The submission has been checked by a Section C Co-editor though the text in the 'Comments' section is the responsibility of the authors.

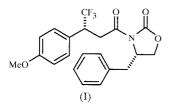
electronic papers

Acta Crystallographica Section C Crystal Structure Communications ISSN 0108-2701

(*S*)-4-Benzyl-3-[(*R*)-4,4,4-trifluoro-3-(4-methoxyphenyl)butanoyl]-1,3oxazolidin-2-one

Shoichi Sato,^a*† Takashi Yamazaki,^b Noriyasu Shinohara^b and Tomoya Kitazume^b

^aX-ray Research Laboratory, Rigaku Corporation, 3-9-12 Matsubaracho, Akishima, Tokyo 196-8666, Japan, and ^bDepartment of Bioengeneering, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan Correspondence e-mail: sato@rigaku.co.jp


Received 17 October 2000 Accepted 30 October 2000

Data validation number: IUC0000320

The C atom at the chiral centre of the title compound, $C_{21}H_{20}F_3NO_4$, takes an *R* configuration. From this assignment, useful information on the intermediate process of the reaction was deduced.

Comment

The title compound, (I), was prepared by way of Michael addition of an organocopper species to 3-[(E)-4,4,4-trifluorobut-2-enoyl]oxazolidin-2-ones in order to obtain optically active molecules with a CF₃ moiety at the chiral centre. The structure determination was made so as to clarify how the molecule is built up through the synthetic reaction. The C atom at the chiral centre takes an R configuration. From this assignment, a useful information on the intermediate process of the reaction was deduced: the construction of the molecule possibly proceeded via intramolecular bidentate chelation between Cu atom and carbonyl groups, rather than a conformation which without such chelation reduces the dipolar repulsion between the carbonyl groups and results in S configuration of the chiral atom owing to stereoselectivity (Yamazaki et al., 1999). The configuration of the asymmetric C atom in the five-membered ring is S. The C-F bond lengths are 1.330 (6) Å on average. The CF_3 and CH_3 groups as well as the benzene-ring part show large atomic displacement parameters.

† Present address: Kuboyamacho 1-9-109, Hachioji, Tokyo 192-0023, Japan.

The preparation of the title compound was presented in a report by Yamazaki *et al.* (1999). Single crystals were grown by slow evaporation from a mixture of hexane and ethyl acetate.

 $R_{\rm int}=0.017$

 $\theta_{\rm max} = 27.51^\circ$

 $h = 0 \rightarrow 17$

 $k = 0 \rightarrow 31$

4 standard reflections

every 150 reflections

intensity decay: 0.27%

 $l = 0 \rightarrow 8$

Crystal data

C21H20F3NO4 Mo $K\alpha$ radiation $M_r = 407.39$ Cell parameters from 25 Orthorhombic, P212121 reflections $\theta = 14.6 - 17.2^{\circ}$ a = 13.115(3) Å $\mu = 0.110 \text{ mm}^{-1}$ b = 24.305 (3) Å c = 6.388 (3) ÅT = 298.2 K $V = 2036.2 (11) \text{ Å}^3$ Plate, colourless Z = 4 $0.70 \times 0.50 \times 0.30 \text{ mm}$ $D_x = 1.329 \text{ Mg m}^{-3}$

Data collection

Rigaku AFC-5*R* diffractometer ω -2 θ scans Absorption correction: ψ scan (North *et al.*, 1968) $T_{min} = 0.865$, $T_{max} = 0.999$ 2716 measured reflections 2641 independent reflections 1619 reflections with $F^2 > 2\sigma(F^2)$

Refinement

 $\Delta \rho_{\text{max}} = 0.15 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.12 \text{ e } \text{\AA}^{-3}$ Refinement on F^2 R(F) = 0.0483 $wR(F^2) = 0.1371$ Extinction correction: Zachariasen S = 1.998(1967), type 2, Gaussian isotropic 2689 reflections Extinction coefficient: 0.007 (2) 275 parameters Absolute configuration: from the Only some H-atom U's refined configuration of C14 in the $w = 1/[\sigma^2(F_o^2) + 0.0016(F_o^2)^2]$ starting material. $(\Delta/\sigma)_{\rm max} = 0.0002$

Table 1

Selected geometric parameters (Å, °).

F1-C9	1.310 (6)	O3-C12	1.190 (4)
F2-C9	1.340 (5)	O4-C12	1.334 (4)
F3-C9	1.339 (6)	O4-C13	1.441 (5)
O1-C1	1.392 (7)	N1-C11	1.397 (4)
O1-C2	1.372 (5)	N1-C12	1.380 (4)
O2-C11	1.213 (4)	N1-C14	1.460 (4)
C1-O1-C2	117.6 (4)	F2-C9-C8	111.5 (4)
C12-O4-C13	111.6 (3)	F3-C9-C8	110.5 (5)
C11-N1-C12	127.0 (3)	O2-C11-N1	117.7 (3)
C11-N1-C14	120.3 (3)	O2-C11-C10	123.2 (3)
C12-N1-C14	112.6 (3)	N1-C11-C10	119.0 (3)
O1-C2-C3	116.8 (4)	O3-C12-O4	123.0 (3)
O1-C2-C7	124.0 (4)	O3-C12-N1	128.6 (3)
F1-C9-F2	106.6 (5)	O4-C12-N1	108.4 (3)
F1-C9-F3	105.8 (5)	O4-C13-C14	105.7 (3)
F1-C9-C8	115.5 (4)	N1-C14-C13	100.8 (3)
F2-C9-F3	106.4 (4)	N1-C14-C15	113.5 (3)

No Friedel pairs were measured. All H atoms were located in difference maps. Only their $U_{\rm iso}$ were refined [0.064 (9)–0.11 (1) Å²], but some of these were fixed.

Data collection: *MSC/AFC Diffractometer Control System* (Rigaku, 1991); cell refinement: *MSC/AFC Diffractometer Control System*; data reduction: *teXsan* (Molecular Structure Corporation, 1998); program(s) used to solve structure: *MULTAN*88 (Debaede-maeker *et al.*, 1985); program(s) used to refine structure: *teXsan*; software used to prepare material for publication: *teXsan*.

References

- Debaedemaeker, T., Tate, C. & Woolfson, M. M. (1985). Acta Cryst. A**41**, 286–290.
- Molecular Structure Corporation & Rigaku Corporation (1998). *teXsan*. Version 1.9. MSC, The Woodlands, TX, USA, and Rigaku, Tokyo, Japan.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
- Rigaku (1991). MSC/AFC Diffractometer Control System. Rigaku Corporation, Tokyo, Japan.
- Yamazaki, T., Shinohara, N. Kitazume, T. & Sato, S. (1999). J. Fluorine Chem. 97, 91–96.
- Zachariasen, W. H. (1967). Acta Cryst. 23, 558-564.